Built-in Functionality
The jquery and underscore libraries are available when defining calculates expressions or writing statements for the condition column or the required column.
ODK Survey exposes built-in functionality through formula functions to decrease form development time.
Formula Functions
The following formula functions can be used to simplify calculations or expressions.
	Built in formula functions

	Name
	Description
	Example

	assign
	Assignment operator that will assign the value
to the field and return the value
	assign('fieldname',value)

	countSelected
	Returns the number of items selected from a
select_multiple prompt
	countSelected(data(‘options’))

	data
	Returns the value of a field or session variable.
	data(‘options’)

	equivalent
	Check to see if two values are equivalent
	equivalent(data(‘option1’), data(‘option2’))

	isFinalized
	Returns true if this submission is finalized
	isFinalized()

	localize
	Localizes the text passed in.
	localize(data('options'))

	metadata
	Returns a metadata field of this row
	metadata(‘_group_read_only’)

	not
	Negates the argument passed in.
	not(selected(data('examples'), 'label_features'))

	now
	Returns the current date
	now().getDay()

	selected
	Returns true if the value selected from a select
prompt is equal to the second argument passed
into the function.
	selected(data('visited_continents'), 'NorthAmerica')

And, additionally, the opendatakit object is also available for use in calculates expressions.

JavaScript Operators
[bookmark: _GoBack]The built in formula functions can be combined in advanced ways using any valid JavaScript expression. This is particularly useful for creating complex condition statements to implement skip patterns or conditional statements for required variables. JavaScript operators will allow the expressions to involve more than one variable or more than one response from a single variable. Parentheses can be used in creating particularly complex conditions. A few basic JavaScript operators:
	Name
	Description
	Example

	&&
	And
	data('person_age')>=18 && selected(data('pizza_type'), 'mushroom')

	||
	Or
	(selected(data('pizza_type'), 'mushroom') || selected(data('pizza_type'), 'onions')

	==
	Equal
	data('person_number') == 1

	===
	Strict equal of the same type
	data('consent')==="yes"

	>=
	Greater than or equal to
	data('age') >=18

	<=
	Less than or equal to
	data('age') <=17

Tip
Make sure that statements using && and || operators for variables that were select_one type are logical and that they work as intended. For example, if the variable pizza_type had been a select_one, the statement (selected(data('pizza_type'), 'mushroom') && selected(data('pizza_type'), 'onions') could never be valid, because the respondent could only have selected one or the other or neither, not both. Therefore, the example instead uses an ||statement.

