
Using ODK XLSX Converter	Comment by Caitlyn Keo: Edits start here:
https://docs.opendatakit.org/odk2/xlsx-converter-using/
ODK Survey offers a rich set of features that can be seamlessly integrated into a custom form. A lot of the functionality can be implemented solely within an Excel workbook. This guide is designed to help you take advantage of this functionality via a guided tour of example tasks.
· Creating and Loading a Form into ODK Survey
· Creating a Simple Survey Form
·
· Skip Patterns Using Conditional Statements	Comment by Caitlyn Keo: link to the new section we wrote below

· Conditions and Required Questions	Comment by Caitlyn Keo: link to the new section we wrote below
· Adding Multiple Choice Questions
· Instance Names	Comment by Caitlyn Keo: link to the new section we wrote below
·
· Using Custom Section Worksheets
· Using Calculations
· Using Queries
· Queries Using Csv Files	Comment by Caitlyn Keo: link to the new section we wrote below
. Linked Tables
. Order By 	Comment by Caitlyn Keo: link to the new section we wrote below
· Internationalization
· More Advanced Branching
· Creating a Custom Initial Worksheet
· Using Validate
· Customizing Prompts
· Other Features
Tip
For a full reference to all the functionality available, see the ODK XLSX Converter Reference.

Creating and Loading a Form into ODK Survey

App- designerApplication Designer has a structure that is critical for the ODK XLSX Converter to “find” things correctly. Within app-designer there are folders such as forms and tables that correspond to a survey.

Below are the steps to create your directory and a new form from the exampleForm:
1. Within the Application Designer's folder, create the following directory structure app/config/tables/your_table_id/forms/your_table_id/
2. Copy the exampleForm.xlsx from app/config/tables/exampleForm/forms/exampleForm/ into this new directory.
3. Rename the XLSX file to your_table_id.xlsx
4. Edit the XLSX file and on the settings worksheet, change the value for table_id to your_table_id. Then update the display title for the survey and the form version. Save the changes.
5. If you have not already, run grunt to launch the Chrome browser and open the Application Designer home page.
6. Navigate to the XLSX Converter tab, choose this file to convert it. Once converted, choose Save to File System and click OK on the 3 pop-ups that alert you to the saving of 3 files to the file system. The three files that are saved are:
· app/config/tables/your_table_id/definition.csv – defines the user-defined columns in your table
· app/config/tables/your_table_id/properties.csv – defines the appearance and available detail and list view HTML files for the table
· app/config/tables/your_table_id/forms/your_table_id/formDef.json – defines the ODK Survey form defined by the XLSX file
0. The first two files are written only if the form id matches the table id. That form and the XLSX file define the data table.
1. Repeat the edit, conversion, and save steps to update the columns in your table and your survey form.
2. Connect your device to your computer with a USB cable.
3. In a separate command window, navigate to the Application Designer directory and type:
$ grunt adbpush
to push the contents of the app/config directory to your device.
0. Start ODK Survey. The form should now be available in ODK Survey.

Creating a Simple Survey Form

Typing the following in the survey worksheet of a workbook with an appropriate settings worksheet will result in a simple survey. This example form uses several optional columns (clause and condition) in addition to the required columns.
Creating a Simple Survey Example Form

	

	clause
	Ccondition
	type
	name
	display.prompt.text

	
	
	integer
	person_age
	How old are you?

	if
	data('person_age') >= 18
	
	
	

	begin screen
	
	
	
	

	
	
	text
	pizza_type
	What is your favorite kind of pizza?

	
	
	integer
	num_slices
	How many slices would you like?

	end screen
	
	
	
	

	else
	
	
	
	

	
	
	note
	
	You are too young to be eating pizza

	end if
	
	
	
	

Skip Patterns Using Conditional Statements
The clause and condition columns can create skip patterns in the survey. They can direct users to certain sections or questions in the survey, depending on preceding data. In the Simple Survey Example Form above, Thethe first row contains an empty clause and an empty condition column. Therefore, the display.prompt.text will always be shown on the screen, and the resulting integer answer will be stored in the variable person_age.
On the next line there is an if in the clause column and data('person_age') >= 18 in the condition column. If the answer stored in the variable person_age is greater than or equal to 18, the following commands should be done until either an else or an end if tag clause is reached. Notice the other three columns are left blank.
In the next row, there is a begin screen tag in the clause column. The remaining four columns are left blank. Until an end screen tag is reached in the clause column, all the following questions will be displayed on one screen. In this case, the user will be asked to input their favorite type of pizza and how many slices they would like on the same page, assuming they are 18 or older.
In the next row, there is an else clausetag. Until end if is reached, anyone who did not satisfy the requirement for the if tag condition will be asked the following questions. In this case, a note to the user that they are too young to be eating pizza will be displayed.

Note
See the built in Formula Functions that can be used to write condition statements. Note that using JavaScript operators for conditions can allow for more advanced conditions that involve more than one variable or more than one response from a single variable.
It is also possible to have conditions within conditions (for example, if followed by if again)(skip patterns within skip patterns). However, an important thing to remember when using the clause column is when to open and close new tagsclauses. The general rule is that the most recently opened clause is the first to be closed.

Tip
Fixes to common error messages received when converting form in ODK XLSX Converter:
· Ensure that all parentheses and quotes are closed or matched.
· Ensure that syntax is in appropriate row. For example, make sure that if clauses are not on the same row as type and values_list.
· Ensure that the end if clause is present and corresponds with the correct if clause. Incorrect end if statements. It is recommended to indent corresponding if and end if statements for organization.

Conditions and Required Questions

The required column is optional but very useful to ensure everyone who should answer a question does so. Users need to respond to all of their required questions before they can finalize the survey. However, it is important that if a required statement is used within a condition statement, the required statement needs to match the condition. Therefore, the question will only be required if the user meets the condition to be asked the question.

An example survey worksheet could look like this:
	Skip Patterns and Required Questions Survey Worksheet

	clause
	condition
	type
	name
	display.prompt.text
	required

	
	
	integer
	person_age
	How old are you?
	TRUE

	if
	data('person_age') >= 18
	
	
	
	

	
	
	text
	pizza_type
	What is your favorite kind of pizza?
	data('person_age') >= 18

	end if
	
	
	
	
	

In this example, it is ideal for a required column to be TRUE for the age question because all users need to answer the question before they can finalize the survey. It would be problematic for a required column to be TRUE for the pizza_type question, because users under the age of 18 do not get asked the question due to the condition. Users under the age of 18 would get an error when they are trying to finalize their surveys and then would be asked to answer the question about pizza. In this example, it is correct to only require the pizza_type question if the user is 18 or older.

Note
An important thing to remember when using the clause column is when to open and close new tags. The general rule is that the most recently opened grouping is the first to be closed.

Adding Multiple Choice Questions
There are three types of multiple choice questions supported by ODK Survey:
· select_one
· select_one_with_other
· select_multiple
Multiple choice questions use the values_list column in the survey worksheet. The values_list column is what links a multiple choice question to its answer set contained on the choices worksheet.

The pizza survey example used earlier can be improved upon with multiple choice options. The resulting survey worksheet would look like this:
	Adding Multiple Choice Questions Example Survey Worksheet

	clause
	Condition
	type
	values_list
	name
	display.prompt.text

	
	
	select_one
	yes_no
	person_age
	Are you 18 or older?

	if
	selected(data('person_age'), 'yes')
	
	
	
	

	begin screen
	
	
	
	
	

	
	
	select_multiple
	topping_list
	pizza_type
	What are your favorite kind of pizza toppings (select up to 3)?

	
	
	integer
	num_slice
	num_sliceHow many slices would you like?
	 How many slices would you like?

	end screen
	
	
	
	
	

	else
	
	
	
	
	

	
	
	note
	You are too young to be eating pizza
	
	 You are too young to be eating pizza

	end if
	
	
	
	
	

The choices sheet allows you to specify the set of choices for multiple choice prompts. The data_value column in the choice worksheet contains the value that will be assigned if the choice is selected. The display.title.text column is what the user sees as the choices.
and So the corresponding choices worksheet would look like this:
	Adding Multiple Choice Questions Example Choices Worksheet

	choice_list_name
	data_value
	display.title.text

	yes_no
	yes
	Yes

	yes_no
	no
	No

	topping_list
	pepperoni
	Pepperoni

	topping_list
	olives
	Black Olives

	topping_list
	onions
	Onions

	topping_list
	mushroom
	Mushrooms

	topping_list
	pepper
	Green Peppers

	topping_list
	bacon
	Canadian Bacon

	topping_list
	pineapple
	Pineapple

Now, instead of typing their age, the user simply selects whether they are older than 18 or not. Furthermore, instead of entering the type of pizza they like, they can select from a list of toppings.
Tip
Because you determine whether a question is select_one or select_multiple from the survey worksheet, the same choice set on the choices worksheet can be used for both select_one and select_multiple questions.

Instance Names

By default, instances (observations or rows in a form’s table) are named things like “2017-07-02T19:46:53.975Z” (date and time). We can assign an instance name in the settings worksheet based on a variable from the survey worksheet.
In the example below, we assign the instance name of the members form to be the member’s name, where name is a variable in the survey sheet:

Instance names settings Worksheet Example
	setting_name
	value

	form_id
	member

	form_version
	2018.08.01

	table_id
	member

	default
	

	instance_name
	name

Using Custom Section Worksheets
Custom section worksheets can be added to a workbook to make the control flow of a survey more readable. We could move all the previous questions about pizza to a new worksheet and name it Pizza. Our survey worksheet would then look like this:
	Custom Section Worksheets Example

	clause
	condition
	type
	values_list
	name
	display.prompt.text

	do
	section Pizza
	
	
	
	

Tip
When splitting a survey into different sections, it is wise to put a note before each section call with display.prompt.text set to read Section <name_of_section>. This is because a do section <name_of_section> call is transparent not visible to the user. Unless the form designer explicitly adds a note, the user will not realize that they entered a section.
Also, after leaving a section, if the user swipes back, the survey will go to the row before the do section call. If the user then swipes forward at this point, the survey will go to the beginning of the section they just completed. It is often beneficial to the user to put a note before entering a section and before leaving a section.

Using Calculations

The calculates worksheet is an optional worksheet. It consists of two columns:
· calculation_name: Each row of the calculates page represents a function that can be used elsewhere in the workbook by referencing the individual calculation_name.
· calculation: The calculation to be performed.
Note
The calculation column can store any valid JavaScript expression.
Tip
There are also some built in functions for ODK Survey that can be used anywhere in the workbook. See the ForumlaFormula Functions for more details.

In general, calculations are referenced in the condition column of survey worksheets. For example, suppose that on the survey page under the variable name birthday the user entered their birthday for a question of type date. The calculates worksheet might look like this:
	Calculates Worksheet Example

	calculation_name
	calculation

	daysOld
	(now().getTime()-new Date(data('birthday')).getTime())/1000/60/60/24

	isBirthdayToday
	calculates.daysOld()%365 == (now().getTime()/1000/60/60/24)%365

and one of the survey worksheets may look like this:
	
	Calculation Survey Worksheet Example

	clause, condition"
	condition
	type
	name
	display.prompt.text
	

	if
	calculates.isBirthdayToday()
	calculates.isBirthdayToday()
	
	
	

	
	
	note
	happyBirthday
note
	Happy Birthday!
happyBirthday
	Happy Birthday!

	end if
	
	
	
	
	

Notice that the <calculation_name>s do not contain parentheses () at the end of them. However, when referencing them it is always in the format of calculates.<calculation_name>().
Tip
Variable names have scope for the entire workbook.

The calculates worksheet is handy because it adds readability to a workbook. Instead of having long, complicated JavaScript calculations in the survey worksheets, they can be consolidated in one, easy to reference location that allows for reusability. Also notice the consistent use of camelCase for variable naming across the different worksheets.

Using Queries
The queries worksheet is an optional worksheet that allows you to request data from external sources and linked tables (subforms).

For queries that get their data from external sources (for example, csv files), the following columns should be used:

· query_name
· query_type
· uri
· callback

For linked_table queries, these columns should be used:
· query_name
· query_type
· linked_table_id
· linked_form_id
· selection
· selectionArgs
· orderByorder_by	Comment by Caitlyn Keo: These were changed with one of the newer released versions!
·
· newRowInitialElementKeyToValueMap
· openRowInitialElementKeyToValueMap
· auxillaryHash

Each row of the queries page represents a choice set that can be used by select prompt types in the workbook. In general, query_name is referenced in the values_list column of survey worksheets.
Queries Using Csv Files	Comment by Caitlyn Keo: New section. Add new bookmark link and link to above.
csv files are an ideal external source if your select prompt question calls on an expansive list. Additionally, csv files allow for you to use a choice_filter to limit choices based on responses to previous questions. For example, suppose that on the survey page under the variable name region the user is asked to select the region they are from. Then the user is asked to select which country they are from. The choices for the list of countries can be filtered based on the region the user selected. The queries worksheet might look like this:
	Queries Worksheet Example Number 1

	query_name
	query_type
	uri
	callback

	regions_csv
	csv
	"regions.csv"
	_.chain(context).pluck('region').uniq().map(function(region){
return {data_value:region, display:{title: {text: region} } };
}).value()

	countries.csv
	csv
	"regions.csv"
	_.map(context, function(place){place.data_value = place.country;
place.display = {title: {text:place.country} };
return place;
})

The data for the queries is coming from the regions.csv file that is located in the same directory as the formDef.json and specified in the uri column. Thus, the query_type for both queries is csv. A snippet of the regions.csv file looks like the following:
	regions.csv

	region
	country

	Africa
	Algeria

	Africa
	Angola

	Africa
	Benin

Knowing the structure of the regions.csv helps in understanding the callback function provided in the callback column. The callback function maps the results from the regions.csv file to the data_value and the display.prompt.text fields using JavaScript. The survey worksheets may look like this:
	Queries Survey Worksheet Example Number 1

	clause
	condition
	type
	values_list
	name
	display.prompt.text
	choice_filter

	begin screen
	
	
	
	
	
	

	
	
	select_one_dropdown
	regions_csv
	regionbirth_region
	Please select your birth region:
	

	
	 	Comment by Caitlyn Keo: For this example we really suggest changing the names of the variables to illustrate that the column headers in the csv and the variable names do not need to be identical, and moreover, when they are not identical, this is how they would look.
	select_one_dropdown
	countries_csv
	countrybirth_country
	Please select your birth country:
	choice_item.region === data('region''birth_region')

	end screen
	
	
	
	
	
	

The choice_filter in this example ensures that the options that get displayed for the birth_country question will only be the countries from the previously selected birth_ region. Notice that choice_item.region is referring to the column titled “region” from the csv and specifies that any country with a corresponding region equal to the answer stored by the birth_region question (data('birth_region')) will be displayed. The countries were mapped to regions in the callback column of the queries worksheet.
In a separate example, if we needed a choice_filter for a three (or more)-level list, the callback column in the queries worksheet would look like this:
	Queries Worksheet Example Number 2

	query_name
	query_type
	uri
	callback

	region_csv
	csv
	" regions.csv"
	_.chain(context).pluck(region).uniq().map(function(region){
return {name: region, label: region, data_value: region, display: {title: {text: region } } };
}).value()

	country_csv
	csv
	" regions.csv"
	(function() {
 var seen = { };
 return _.chain(context).filter(function(place) {
 var keep = (seen[place. country] !== true);
 seen[place. country] = true;
 return keep; })
 .map(function(place) {
place.name = place. country;
place.label = place. country;
place.data_value = place.name;
place.display = {title: {text: place.label} };
return place;
 }).value();
})()

	city_csv
	csv
	" regions.csv"
	_.map(context, function(place){
place.name = place. city;
place.label = place. city;
place.data_value = place.name;
place.display = {title: {text: place.label} };
return place;
})

And the choice filter column would look like:
	Queries Survey Worksheet Example Number 2

	clause
	condition
	type
	values_list
	name
	display.prompt.text
	choice_filter

	begin screen
	
	
	
	
	
	

	
	
	select_one_dropdown
	regions_csv
	birth_region
	Please select your birth region:
	

	
	
	select_one_dropdown
	countries_csv
	birth_country
	Please select your birth country:
	choice_item.region === data('birth_region')

	
	
	select_one_dropdown
	city_csv
	birth_city
	Please select your birth country:
	choice_item.country === data('birth_country)

	end screen
	
	
	
	
	
	

The queries worksheet is powerful because it allows more flexibility in terms of where data for the survey can reside.

Linked Tables
linked_table is the other use for the queries worksheet. linked_table allows you to launch a subform that can edit a different data table. For example, if a survey is dealing with information about households, the user may want to ask questions about the general household but also questions about specific usersmembers. linked_table can be used to launch subforms that ask questions about the specific household members.
 The survey worksheet may look like this:
	Linked Table Survey Worksheet Example

	clause
	condition
	type
	values_list
	name
	display.prompt.text
	choice_filter

	
	
	text
	
	house_id
	Input the unique household id:
	

	
	
	integer
	
	num_members
	How many people live in this house?
	

	
	
	linked_table
	members
	
	Add and enter information for the different household members
	

	
	
	select_one
	members
	household_head
	Who is the household head?
	

The queries worksheet would look like this:
	Linked Table Query Worksheet Example

	query_name
	query_type
	linked_form_id
	linked_table_id
	selection
	selectionArgs
	newRowInitialElementKeyToValueMap

	members
	linked_table
	members_info
	house_members
	house_id = ?
	[opendatakit.getCurrentInstanceId()]
	{ house_id: opendatakit.getCurrentInstanceId() }

First the user enters a house house_id for the household and answers an arbitrary question about its residents. This information is stored in the data table for general household information (specified on the settings worksheet under table_id). Then the user reaches a linked_table prompt that uses the values_list members. This is connected to the members query on the queries worksheet. It links to a different survey (subform) called members_info that edits a different data table. The selection criteria is that the house_id in the house_members data table matches the instanceID of this current household.
Initially this list will be empty since no members have been added. The user can click on the Create Instance button to add new people members for this household. The house_id will be set automatically for this new member via the newRowInitialElementKeyToValueMap content, which specifies that the house_id field in the linked table should be initialized with the instanceID of the current household.

Note
The selection criteria and its type (in this case, house_id and text) must be added to the model subset sheet of the subform (members_info) in order for selection criteria to be persisted to the database and for the subform to be found by its parent form; the selection criteria cannot filter on session variables since those values are never persisted.

When the user finishes the subform, the screen will return to the same linked_table prompt in the parent form. At this point, the user can continue adding more usersmembers to the household, edit an existing member's info, or go to a different screen.
The values_list for the select_one question prompt in the example above also uses the members query. Instead of being able to launch subforms to edit information about different members, the selection criteria is used to populate a multiple choice question. The answer to the multiple choice question is saved to the general household data table, not the members data table.

Order By

order_by is an optional column used in the queries worksheet. It is particularly useful for select prompts that query instances that were created through subforms. To use order_by first put the name of the variable (in the subform) you want to order followed by the direction. ASC is for ascending and DES is for descending. The default direction is ascending if nothing is specified.
The queries worksheet would now look like this:
order_by queries Worksheet Example
	query_name
	query_type
	linked_form_id
	linked_table_id
	selection
	selectionArgs
	newRowInitialElementKeyToValueMap
	order_by

	members
	linked_table
	members_info
	house_members
	house_id = ?
	[opendatakit.getCurrentInstanceId()]
	{ house_id: opendatakit.getCurrentInstanceId() }
	age ASC

The survey worksheet would remain the same as the linked table example:
	order_by Survey Worksheet Example

	clause
	condition
	type
	values_list
	name
	display.prompt.text
	choice_filter

	
	
	text
	
	house_id
	Input the unique household id:
	

	
	
	integer
	
	num_members
	How many people live in this house?
	

	
	
	linked_table
	members
	
	Add and enter information for the different household members
	

	
	
	select_one
	members
	household_head
	Who is the household head?
	

In this case, after we have completed all of our household member subforms, we are again asked the select_one question prompt about the household head, but this time our order_by will have the members from the household in ascending order by their age from our members query (in this example, age was asked in the subform).

Internationalization
Survey offers the ability to display text in different languages. This requires usage of the settings worksheet to determine establish which an additional language to use. However, for a Extra display columns need to be added for any language other than the default language, extra display columns need to be added. For example, if one of the non-default language options was Spanish (2-letter language code "es"), every worksheet with a display.prompt.text or display.title.text column would also need a display.prompt.text.es or display.title.text.es column. This is true for all columns that need an alternate language option.
[bookmark: _GoBack]The setting worksheet now will look like this:
Internationalization settings Worksheet Example
	setting_name
	value
	display.title.text
	display.title.text.es
	display.locale.text
	display.locale.text.es

	form_id
	household
	
	
	
	

	form_version
	2018.08.01
	
	
	
	

	table_id
	household
	
	
	
	

	default
	
	
	
	English
	Inglés

	es
	
	
	
	English
	Español

	survey
	
	Household form
	Forma de hogar
	
	

The columns display.locale.text and display.locale.text.es show what the language options are in each locale.
The survey worksheets now may look like this to give the users the option answer questions in either language:

	Internationalization framework_translations Worksheet Example

	type
	name
	display.prompt.text
	display.prompt.text.es

	text
	user_name
	What is your name?
	¿Cuál es su nombre?

	integer
	user_age
	How old are you?
	¿Cuántos años tienes?

The labels used in the buttons and prompts supplied by ODK Survey are defined in the framework_translations sheet of the framework.xlsx file under config/assets/framework/forms/framework.xlsx Simply add your language code and translations to this sheet of this XLSX file and run XLSXConverter on it to enable support of your language across all of the built-in buttons and prompts within ODK Survey.

Tip
· If you receive message about an error in the template after you have added an additional language, double check that all display columns in the framework and survey workbooks are translated for both the default language and the non-default language. The error often occurs if the column headers are wrong or not yet added, or if any of the questions are available in one language option and not the other. For example, in the Internationalization framework_translations Worksheet Example if the user_name asked “¿Cuál es su nombre?” in Spanish, but had an empty cell for the default language, we would get an error.

